Topological lattices realized in superconducting circuit optomechanics

  • Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 861391 (2014).

    Articles Google Scholar

  • Teufel, JD et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475359–363 (2011).

    Article CAS Google Scholar

  • Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 47889–92 (2011).

    Article CAS Google Scholar

  • Kotler, S. et al. Direct observation of deterministic macroscopic entanglement. Science 372622–625 (2021).

    Article CAS Google Scholar

  • Ockeloen-Korppi, C. et al. Stabilized entanglement of massive mechanical oscillators. Nature 556478–482 (2018).

    Article CAS Google Scholar

  • Wollman, EE et al. Quantum squeezing of motion in a mechanical resonator. Science 349952–955 (2015).

    Article MathSciNet CAS MATH Google Scholar

  • Teufel, JD, Donner, T., Castellanos-Beltran, M., Harlow, JW & Lehnert, KW Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 4820–823 (2009).

    Article CAS Google Scholar

  • Andrews, RW et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10321–326 (2014).

    Article CAS Google Scholar

  • Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5031011 (2015).

    Google Scholar

  • Carusotto, I. et al. Photonic materials in circuit quantum electrodynamics. Nat. Phys. 16268–279 (2020).

    Article CAS Google Scholar

  • Asbóth, JK, Oroszlány, L. & Pályi, A. A Short Course on Topological Insulators. Lecture Notes in Physics Vol. 919, 997 (Springer, 2016).

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91015006 (2019).

    Article MathSciNet CAS Google Scholar

  • Pereira, VM, Neto, AC & Peres, N. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80045401 (2009).

    Articles Google Scholar

  • Naumis, GG, Barraza-Lopez, S., Oliva-Leyva, M. & Terrones, H. Electronic and optical properties of strained graphene and other strained 2d materials: a review. Rep. Prog. Phys. 80096501 (2017).

    Articles Google Scholar

  • Underwood, D. et al. Imaging photon lattice states by scanning defect microscopy. Phys. Rev. X 6021044 (2016).

    Google Scholar

  • Wang, H. et al. Mode structure in superconducting metamaterial transmission-line resonators. Phys. Rev. Appl.11054062 (2019).

    Article CAS Google Scholar

  • Heinrich, G., Ludwig, M., Qian, J., Kubala, B. & Marquardt, F. Collective dynamics in optomechanical arrays. Phys. Rev. Lett. 107043603 (2011).

    Articles Google Scholar

  • Xuereb, A., Genes, C. & Dantan, A. Strong coupling and long-range collective interactions in optomechanical arrays. Phys. Rev. Lett. 109223601 (2012).

    Articles Google Scholar

  • Ludwig, M. & Marquardt, F. Quantum many-body dynamics in optomechanical arrays. Phys. Rev. Lett. 111073603 (2013).

    Articles Google Scholar

  • Raeisi, S. & Marquardt, F. Quench dynamics in one-dimensional optomechanical arrays. Phys. Rev. A 101023814 (2020).

    Article CAS Google Scholar

  • Zangeneh-Nejad, F. & Fleury, R. Topological optomechanically induced transparency. Opt. Lett. 455966 (2020).

    Article CAS Google Scholar

  • Akram, U., Munro, W., Nemoto, K. & Milburn, G. Photon-phonon entanglement in coupled optomechanical arrays. Phys. Rev. A 86042306 (2012).

    Articles Google Scholar

  • Sanavio, C., Peano, V. & Xuereb, A. Nonreciprocal topological phononics in optomechanical arrays. Phys. Rev. B 101085108 (2020).

    Article CAS Google Scholar

  • Tomadin, A., Diehl, S., Lukin, MD, Rabl, P. & Zoller, P. Reservoir engineering and dynamical phase transitions in optomechanical arrays. Phys. Rev. A 86033821 (2012).

    Articles Google Scholar

  • O’Connell, AD et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464697–703 (2010).

    Articles Google Scholar

  • Palomaki, T., Harlow, J., Teufel, J., Simmonds, R. & Lehnert, K. W. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495210–214 (2013).

    Article CAS Google Scholar

  • Riedinger, R. et al. Remote quantum entanglement between two micromechanical oscillators. Nature 556473–477 (2018).

    Article CAS Google Scholar

  • Roque, TF, Peano, V., Yevtushenko, OM & Marquardt, F. Anderson localization of composite excitations in disordered optomechanical arrays. New J. Phys. 19013006 (2017).

    Articles Google Scholar

  • Ren, H. et al. Topological phonon transport in an optomechanical system. Nat. Commun. 133476 (2022).

  • Safavi-Naeini, AH et al. Two-dimensional phononic-photonic band gap optomechanical crystal cavity. Phys. Rev. Lett. 112153603 (2014).

    Articles Google Scholar

  • Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114114301 (2015).

    Articles Google Scholar

  • Huber, SD Topological mechanics. Nat. Phys. 12621–623 (2016).

    Article CAS Google Scholar

  • Surjadi, JU et al. Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. 211800864 (2019).

    Article CAS Google Scholar

  • Cicak, K. et al. Low-loss superconducting resonant circuits using vacuum-gap-based microwave components. Appl. Phys. Lett. 96093502 (2010).

    Articles Google Scholar

  • de Lépinay, LM, Ockeloen-Korppi, CF, Woolley, MJ & Sillanpää, MA Quantum mechanics–free subsystem with mechanical oscillators. Science 372625–629 (2021).

    Article MathSciNet MATH Google Scholar

  • Tóth, LD, Bernier, NR, Nunnenkamp, ​​A., Feofanov, AK & Kippenberg, TJ A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nat. Phys. 13787–793 (2017).

    Articles Google Scholar

  • Pirkkalainen, J. -M. et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494211–215 (2013).

    Article CAS Google Scholar

  • Reed, A. et al. Faithful conversion of propagating quantum information to mechanical motion. Nat. Phys. 131163–1167 (2017).

    Article CAS Google Scholar

  • Bernier, NR et al. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. https://doi.org/10.1038/s41467-017-00447-1 (2017).

  • Mirhosseini, M. et al. Superconducting metamaterials for waveguide quantum electrodynamics. Nat. Commun. 91 (2018).

    Article CAS Google Scholar

  • Kim, E. et al. Quantum electrodynamics in a topological waveguide. Phys. Rev. X 11011015 (2021).

    CAS Google Scholar

  • Ni, ZH et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 22301 (2008).

    Article CAS Google Scholar

  • Rechtsman, MC et al. Topological creation and destruction of edge states in photonic graphene. Phys. Rev. Lett. 111103901 (2013).

    Articles Google Scholar

  • Delplace, P., Ullmo, D. & Montambaux, G. Zak phase and the existence of edge states in graphene. Phys. Rev. B 84195452 (2011).

    Articles Google Scholar

  • Morvan, A., Féchant, M., Aiello, G., Gabelli, J., & Estève, J. Bulk properties of honeycomb lattices of superconducting microwave resonators. Phys. Rev. Res. 4013085 (2022).

  • Li, L., Xu, Z. & Chen, S. Topological phases of generalized su-schrieffer-heeger models. Phys. Rev. B 89085111 (2014).

    Articles Google Scholar

  • Weis, S. et al. Optomechanically induced transparency. Science 3301520–1523 (2010).

    Article CAS Google Scholar

  • St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11651–656 (2017).

    Article CAS Google Scholar

  • Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, MS Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 5417954 (1996).

    Article CAS Google Scholar

  • Yanay, Y. & Clerk, AA Reservoir engineering with localized dissipation: dynamics and prethermalization. Phys. Rev. Res. 2023177 (2020).

    Article CAS Google Scholar

  • Zippilli, S. & Vitali, D. Dissipative engineering of gaussian entangled states in harmonic lattices with a single-site squeezed reservoir. Phys. Rev. Lett. 126020402 (2021).

    Article MathSciNet CAS Google Scholar