Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 861391 (2014).
Teufel, JD et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475359–363 (2011).
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 47889–92 (2011).
Kotler, S. et al. Direct observation of deterministic macroscopic entanglement. Science 372622–625 (2021).
Ockeloen-Korppi, C. et al. Stabilized entanglement of massive mechanical oscillators. Nature 556478–482 (2018).
Wollman, EE et al. Quantum squeezing of motion in a mechanical resonator. Science 349952–955 (2015).
Teufel, JD, Donner, T., Castellanos-Beltran, M., Harlow, JW & Lehnert, KW Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 4820–823 (2009).
Andrews, RW et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10321–326 (2014).
Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5031011 (2015).
Google Scholar
Carusotto, I. et al. Photonic materials in circuit quantum electrodynamics. Nat. Phys. 16268–279 (2020).
Asbóth, JK, Oroszlány, L. & Pályi, A. A Short Course on Topological Insulators. Lecture Notes in Physics Vol. 919, 997 (Springer, 2016).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91015006 (2019).
Pereira, VM, Neto, AC & Peres, N. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80045401 (2009).
Naumis, GG, Barraza-Lopez, S., Oliva-Leyva, M. & Terrones, H. Electronic and optical properties of strained graphene and other strained 2d materials: a review. Rep. Prog. Phys. 80096501 (2017).
Underwood, D. et al. Imaging photon lattice states by scanning defect microscopy. Phys. Rev. X 6021044 (2016).
Google Scholar
Wang, H. et al. Mode structure in superconducting metamaterial transmission-line resonators. Phys. Rev. Appl.11054062 (2019).
Heinrich, G., Ludwig, M., Qian, J., Kubala, B. & Marquardt, F. Collective dynamics in optomechanical arrays. Phys. Rev. Lett. 107043603 (2011).
Xuereb, A., Genes, C. & Dantan, A. Strong coupling and long-range collective interactions in optomechanical arrays. Phys. Rev. Lett. 109223601 (2012).
Ludwig, M. & Marquardt, F. Quantum many-body dynamics in optomechanical arrays. Phys. Rev. Lett. 111073603 (2013).
Raeisi, S. & Marquardt, F. Quench dynamics in one-dimensional optomechanical arrays. Phys. Rev. A 101023814 (2020).
Zangeneh-Nejad, F. & Fleury, R. Topological optomechanically induced transparency. Opt. Lett. 455966 (2020).
Akram, U., Munro, W., Nemoto, K. & Milburn, G. Photon-phonon entanglement in coupled optomechanical arrays. Phys. Rev. A 86042306 (2012).
Sanavio, C., Peano, V. & Xuereb, A. Nonreciprocal topological phononics in optomechanical arrays. Phys. Rev. B 101085108 (2020).
Tomadin, A., Diehl, S., Lukin, MD, Rabl, P. & Zoller, P. Reservoir engineering and dynamical phase transitions in optomechanical arrays. Phys. Rev. A 86033821 (2012).
O’Connell, AD et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464697–703 (2010).
Palomaki, T., Harlow, J., Teufel, J., Simmonds, R. & Lehnert, K. W. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495210–214 (2013).
Riedinger, R. et al. Remote quantum entanglement between two micromechanical oscillators. Nature 556473–477 (2018).
Roque, TF, Peano, V., Yevtushenko, OM & Marquardt, F. Anderson localization of composite excitations in disordered optomechanical arrays. New J. Phys. 19013006 (2017).
Ren, H. et al. Topological phonon transport in an optomechanical system. Nat. Commun. 133476 (2022).
Safavi-Naeini, AH et al. Two-dimensional phononic-photonic band gap optomechanical crystal cavity. Phys. Rev. Lett. 112153603 (2014).
Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114114301 (2015).
Huber, SD Topological mechanics. Nat. Phys. 12621–623 (2016).
Surjadi, JU et al. Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. 211800864 (2019).
Cicak, K. et al. Low-loss superconducting resonant circuits using vacuum-gap-based microwave components. Appl. Phys. Lett. 96093502 (2010).
de Lépinay, LM, Ockeloen-Korppi, CF, Woolley, MJ & Sillanpää, MA Quantum mechanics–free subsystem with mechanical oscillators. Science 372625–629 (2021).
Tóth, LD, Bernier, NR, Nunnenkamp, A., Feofanov, AK & Kippenberg, TJ A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nat. Phys. 13787–793 (2017).
Pirkkalainen, J. -M. et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494211–215 (2013).
Reed, A. et al. Faithful conversion of propagating quantum information to mechanical motion. Nat. Phys. 131163–1167 (2017).
Bernier, NR et al. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. https://doi.org/10.1038/s41467-017-00447-1 (2017).
Mirhosseini, M. et al. Superconducting metamaterials for waveguide quantum electrodynamics. Nat. Commun. 91 (2018).
Kim, E. et al. Quantum electrodynamics in a topological waveguide. Phys. Rev. X 11011015 (2021).
Ni, ZH et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 22301 (2008).
Rechtsman, MC et al. Topological creation and destruction of edge states in photonic graphene. Phys. Rev. Lett. 111103901 (2013).
Delplace, P., Ullmo, D. & Montambaux, G. Zak phase and the existence of edge states in graphene. Phys. Rev. B 84195452 (2011).
Morvan, A., Féchant, M., Aiello, G., Gabelli, J., & Estève, J. Bulk properties of honeycomb lattices of superconducting microwave resonators. Phys. Rev. Res. 4013085 (2022).
Li, L., Xu, Z. & Chen, S. Topological phases of generalized su-schrieffer-heeger models. Phys. Rev. B 89085111 (2014).
Weis, S. et al. Optomechanically induced transparency. Science 3301520–1523 (2010).
St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11651–656 (2017).
Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, MS Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 5417954 (1996).
Yanay, Y. & Clerk, AA Reservoir engineering with localized dissipation: dynamics and prethermalization. Phys. Rev. Res. 2023177 (2020).
Zippilli, S. & Vitali, D. Dissipative engineering of gaussian entangled states in harmonic lattices with a single-site squeezed reservoir. Phys. Rev. Lett. 126020402 (2021).